Two-Step Regio- and Stereoselective Synthesis of *cis*-Vinylstannanes

Paul Malek Mirzayans, Rebecca H. Pouwer, and Craig M. Williams*

School of Molecular and Microbial Sciences, University of Queensland, Brisbane, 4072 Queensland, Australia

c.williams3@uq.edu.au

Received June 3, 2008

ABSTRACT

$$= R \xrightarrow{1) Bu_2 Te_2} \left\langle \begin{array}{c} R \\ \hline 1 \\ 2 \\ \end{array} \right\rangle \text{NaBH}_4 \left\langle \begin{array}{c} R \\ \hline TeBu \\ \end{array} \right\rangle \xrightarrow{1) BuLi} \left\langle \begin{array}{c} R \\ \hline 2 \\ \\ \text{Me}_3 \text{SnCl} \end{array} \right\rangle \left\langle \begin{array}{c} R \\ \\ \text{SnMe}_3 \\ \end{array} \right\rangle$$

Herein we describe a novel stereoselective synthesis of *cis*-vinylstannanes employing the widely established Li/Te exchange pathway. In contrast to previously reported methods of *cis*-selective hydrostannation (i.e., ZrCl₄), this method demonstrates compatibility toward oxygenated substrates.

The Stille coupling¹ of vinyltin reagents with vinyl² and aryl halides² and triflates² is a synthetically useful means for obtaining conjugated double bonds with defined geometry.¹ Unfortunately, methods to access cis-vinylstannanes are somewhat limited and often exhibit poor stereoselectivity. To date, *cis*-vinylstannanes have been most commonly synthesized by radical,³ Lewis acid,⁴ and transition metal⁵ mediated hydrostannation of alkynes, hydrozirconation⁶ of stannyl alkynes, and the transmetalation of vinyl metallic substrates.⁷ The use of ZrCl₄ as a Lewis acid catalyst in the hydrostannation of alkynes has proven especially valuable,^{4b} mainly because the reaction proceeds in an entirely cisselective manner. However, the reaction is not compatible with oxygen-containing functionality, possibly due to coordination to the Lewis acid, as it requires bulky substituents (e.g., TBDMS) on oxygen to facilitate reaction.^{4b} The use of bulky substituents on oxygen, however, has not proven

to be a general method in order to circumvent this problem.^{8,9} Furthermore, in the case of di- and tristannylation the high control over stereochemistry is lost.^{4c}

The hydrometalation of alkynes tends to occur in a *syn* fashion to give trans-organometallics. However, isomerization often leads to mixtures of cis and trans isomers. An exception is found in the hydrotelluration of alkynes, which occurs in a highly selective *anti* fashion to give *cis*-vinyltellurides, which are not susceptible to isomerization.¹⁰ Vinyl tellurides are also known to undergo transmetalation to give, for example, vinyl lithium, copper, zinc, magnesium, aluminum, calcium, and sodium reagents with retention of configuration.¹¹

With a view to finding a method to selectively synthesize *cis*-vinylstannanes that could also accommodate oxygen functionality, a two-step hydrotelluration lithium-tin exchange protocol was investigated, the results of which are presented herein.

ORGANIC

⁽¹⁾ Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508.

⁽²⁾ Mee, S. P. H.; Lee, V.; Baldwin, S. E. Chem. Eur. J. 2005, 11, 3294.

⁽³⁾ Smith, N. D.; Mancuso, J.; Lautens, M. Chem. Rev. 2000, 100, 3257.
(4) (a) Gevorgyan, V.; Liu, J. X.; Yamamoto, Y. Chem. Commun. 1998,

^{1, 37. (}b) Asao, N.; Liu, J. X.; Sudoh, T.; Yamamoto, Y. J. Org. Chem. **1996**, 61, 4568. (c) Rim, C.; Son, D. Y. Org. Lett. **2003**, 5, 3443.

⁽⁵⁾ Kikukawa, K.; Umekawa, H.; Wada, F.; Matsuda, T. Chem. Lett. **1988**, 881.

^{(6) (}a) Bickley, J. F.; Roberts, S. M.; Santoro, M. G.; Snape, T. J. *Tetrahedron* **2004**, *60*, 2569. (b) Bialy, L.; Waldmann, H. *Chem. Eur. J.* **2004**, *10*, 2759. (c) Lipshutz, B.; Keil, R.; Barton, J. *Tetrahedron Lett.* **1992**, *33*, 5861.

⁽⁷⁾ Cochran, J. C.; Philips, H. K.; Tom, S.; Hurd, A. R.; Bronk, B. S. Organometallics 1994, 13, 947.

⁽⁸⁾ L'opez, S.; Montenegro, J.; Sa'a, C. *J. Org. Chem.* **2007**, *72*, 9572. (9) To the best of our knowledge, only one isolated example of *trans*-hydrostannylation employing $B(C_6F_5)_3$ as a Lewis acid catalyst compatible with oxygen functionality has been reported. See ref 4a.

⁽¹⁰⁾ Barross, S. M.; Dabdoub, M. J.; Dabdoub, V. M. B.; Comasseto, J. V. Organometallics **1989**, 8, 1661.

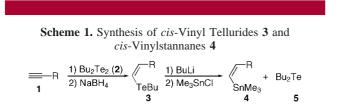

^{(11) (}a) Huang, X.; Liang, C.; Qing, X.; He, Q. J. Org. Chem. 2001, 66, 74, and references therein. (b) Zeni, G.; Lüdtke, D. S.; Panatieri, R. B.; Braga, A. L. Chem. Rev. 2006, 106, 1032. (c) Petragnani, N.; Stefani, H. A. Tellurium In Organic Chemistry, 2nd, Updated and Enlarged Edition; Academic Press: Amsterdam, The Netherlands, 2007.

Table 1. Hydrotelluration	of Alkynes	1 Affording
cis-Vinyltellurides 3		

entry	substrate	vinyltelluride	time (h)	yield (%) ^a
1		TeBu O'Pr	20	67%
2		OMe TeBu	18	71%
3		PrO ⁱ TeBu	22	79%
4	=-{	K TeBu	2.5	61%
5	=-{	K TeBu	5	78%
6	— ←CF ₃	CF3 TeBu	3	90%
7	=-{_}_=	TeBu BuTe	7	78%
8	$= - (\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n$	K C C C C C C C C C C C C C C C C C C C	2.5	75%
9	=-	TeBu	15	48%
10 ⁶	OBn	OBn TeBu BuTe OBn	21	42%

^a Isolated yields. ^b Inseparable mixture (ratio 2:1).

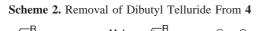
Alkynes (i.e., 1) (Table 1, entries 1-10) were treated with dibutyl ditelluride 2 and sodium borohydride under standard conditions¹¹ to give *cis*-vinyltellurides (i.e., 3) in 48–90% yield (Table 1) (Scheme 1). In all conjugated alkyne cases,

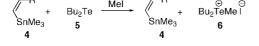
regio- and stereoselectivity were maintained. Isolated alkynes (Table 1, entry 10), however, posed regioselectivity problems yielding mixtures of 1,2- and 2,2-disubstituted vinylic tellurides, in favor of the 1,2-disubstituted vinylic tellurides, as previously documented.^{12,13}

The *cis*-vinyl tellurides were uneventfully transmetalated with *n*-butyllithium to the corresponding vinyl lithium, which were subsequently quenched with trimethyltin chloride affording the *cis*-vinylstannanes in 40–68% yield without any detectable *trans*-vinylstannane (Table 2, entries 1–9) (Scheme 1).

Table 2. Transmetalation	of <i>cis</i> -Vinyl Telluride 3 Affording
cis-Vinylstannanes 4	

entry	vinyltellurid	vinylstannane	yield (%) ^a	
1	O [/] ₽r TeBu	SnMe ₃	46%	
2	OMe OMe TeBu	OMe OMe SnMe ₃	68%	
3	PrO'OMe TeBu	PrO'OMe	60%	
4	TeBu	SnMe ₃	50%	
5	TeBu	SnMe ₃	68%	
6	CF ₃ TeBu	SnMe ₃	61%	
7	TeBu BuTe	SnMe ₃ Me ₃ Sn	40%	
8	TeBu O	SnMe ₃	64%	
9	TeBu	SnMe ₃	50%	
^a Isolated yields.				


Vinylstannanes **4** were accompanied by small amounts of the corresponding protonated alkenes, which were readily removed under vacuum. The removal of dibutyltelluride **5**, however, proved very difficult by distillation or by column chromatography of the nonpolar and/or low molecular weight compounds (i.e., Table 2, entries 4-7, 9^{14}). Hence, an efficient method for separation of nonpolar *cis*-vinylstannanes **4** from dibutyl telluride **5** was required. Capitalizing on the fact that dibutyl telluride **5** reacts with methyl iodide to give methyl di-*n*-butyltelluronium iodide **6** under catalyzed (Ag-NO₃, AgBF₄)¹⁵ and noncatalyzed conditions,¹⁶ excess methyl iodide (6 equiv) was added to the reaction mixture after


⁽¹²⁾ Stefani, H. A.; Costa, I. M.; Zeni, G. Tetrahedron Lett. 1999, 40, 9215.

⁽¹³⁾ Vieira, M. L.; Zinn, F. K.; Comasseto, J. V. J. Braz. Chem. Soc. 2001, 12, 586.

⁽¹⁴⁾ Purification by silica column chromatography was achieved; however, the general procedure should be followed for ease.

trimethyltin chloride. This workup additive reacted selectively with the dibutyl telluride **5** affording telluronium salt **6**, which could be readly separated from the *cis*-vinylstannane **4** by trituration followed by column chromatography (Scheme 2).

In conclusion, developing new methods that access *cis* double bonds selectively for application to the construction

of conjugated *cis* double bond systems is of considerable importance, for example, construction of *cis*-configured 1,3,5-trienes for 6π -electrocyclization.^{17,18} This body of work demonstrates that access to *cis*-vinylstannanes containing oxygen functionality is now readily achievable allowing further utilization of the Stille reaction to incorporate *cis* double-bond conjugation.

Acknowledgment. We thank the University of Queensland for financial support.

Supporting Information Available: Copies of ¹H and ¹³C NMR spectra for all compounds, including experimental conditions and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL801251M

⁽¹⁵⁾ Lenardão, E. J.; Mendes, S. R.; Ferreira, P. C.; Perin, G.; Silveira, C. C.; Jacob, R. G. *Tetrahedron Lett.* **2006**, *47*, 7439.

⁽¹⁶⁾ Balfe, M. P.; Chaplin, C. A.; Phillips, H. J. Chem. Soc. 1938, 341.

⁽¹⁷⁾ Brandänge, S.; Leijonmarck, H. J. Chem. Soc., Chem. Commun. 2004, 292.

⁽¹⁸⁾ Pouwer, R. H.; Schill, H.; Williams, C. M. Eur. J. Org. Chem. 2007, 4699.